District heating involves generating heat in a centralized location and then distributing it to residences, businesses and industry in a local area.
District heating networks offer great potential for efficient, cost-effective and flexible large-scale use of low-carbon energy for heating. However, the decarbonisation potential of district heating is largely untapped, as 90% of the heat supplied in district networks is produced from fossil fuels, especially in the two largest markets of China and Russia.
Aligning with the Net Zero Emissions by 2050 Scenario requires significant efforts to rapidly improve the energy efficiency of existing networks, switch them to renewable heat sources (such as bioenergy, solar thermal, heat pumps and geothermal), integrate secondary heat sources (such as waste heat from industrial installations and data centres), and to develop new high-efficiency infrastructure.
District heating involves generating heat in a centralized location and then distributing it to residences, businesses and industry in a local area.
District heating networks offer great potential for efficient, cost-effective and flexible large-scale use of low-carbon energy for heating. However, the decarbonisation potential of district heating is largely untapped, as 90% of the heat supplied in district networks is produced from fossil fuels, especially in the two largest markets of China and Russia.
Aligning with the Net Zero Emissions by 2050 Scenario requires significant efforts to rapidly improve the energy efficiency of existing networks, switch them to renewable heat sources (such as bioenergy, solar thermal, heat pumps and geothermal), integrate secondary heat sources (such as waste heat from industrial installations and data centres), and to develop new high-efficiency infrastructure.
In 2022 district heating production remained relatively similar to the previous year, meeting around 9% of the global final heating need in buildings and industry. As demonstrated by the best performing networks, district heating offers great potential for efficient, cost-effective and flexible large-scale integration of low-emission energy sources into the heating energy mix. However, the decarbonisation potential of district heating is largely untapped, as fossil fuels still dominate district network supplies globally (about 90% of total heat production), especially in the two largest markets of China and Russia. Aligning with the Net Zero Emissions by 2050 (NZE) Scenario requires significantly stronger efforts to rapidly improve the energy efficiency of existing networks and switch them to renewable heat sources (such as bioenergy , solar thermal, large-scale heat pumps and geothermal ). Other priorities include integrating secondary heat sources (such as waste heat from industrial installations and data centres), investing in heat storage capacities and enabling sector coupling, and developing high-efficiency infrastructure in areas with dense heat demand.
1 The term "District Heat" in this page refers to the "heat" category as defined by the IEA's Energy Statistics Manual and reported in the IEA's Energy Balances. This heat is defined as the amount of heat produced and sold. In other words, it is the amount of heat leaving the plant for use by persons unrelated to the producer.
Decarbonisation efforts have not yet been sufficient to curb associated emissions
Decarbonisation efforts have not yet been sufficient to curb associated emissions
In 2022, CO2 emissions from district heat production were 1.5% higher than in 2021 and about 25% higher than in 2010, due to growing demand. District heating currently represents almost 4% of global CO2 emissions, with a significant contribution arising from China and, to a lesser extent, Russia. Europe is the third largest emitter, but on average it has a lower carbon intensity compared to the rest of the world. Over the past decade, the global average CO2 intensity of district heat supplies has been increasing at about 0.4% per year, owing mostly to the development of new fossil fuel-based networks in China. Aligning with the NZE Scenario will require the CO2 emissions intensity of district heat production to be at least 20% lower by 2030 compared with 2022.
Despite large potential for the integration of renewable sources and recycled heat, fossil fuels dominate district heat supplies globally
Despite large potential for the integration of renewable sources and recycled heat, fossil fuels dominate district heat supplies globally
In 2022 the amount of heat produced for district heating networks globally was around 17 EJ, relatively similar to 2021, but about 10% more than 2020 and 17% more than a decade earlier. China, Russia and Europe are responsible for more than 90% of global district heat production, and China is currently recording the fastest growth in district network connections.
Nearly 90% of district heat globally was produced from fossil fuels in 2022 – predominantly coal (over 48%), especially in China, natural gas (about 38%), in particular in Russia, and oil (3%) – down from about 95% in 2000. The remainder is produced by municipal waste, waste heat recovery, nuclear and renewable sources. Renewables represented just about 5% of district heat supplies globally, althought this share can be over ten times higher in some countries. While bioenergy and renewable municipal waste account for the large majority of renewable district network supplies, large-scale solar thermal systems, geothermal energy and heat pumps are seeing growing interest.
Europe currently leads renewables integration in district heating, with around 25% of its district heat supplies produced from renewable sources. Particularly high rates are observed in certain countries including Sweden, Denmark, Austria, Estonia, Lithuania, Latvia and Iceland, where more than 50% of district heat is fuelled by renewables.
Slightly more than 40% of the heat generated globally in district heating plants is consumed by the buildings sector and around another 40% goes to the industry sector, while the remainder is self-consumed on the production sites, used in agriculture or lost during distribution. District heating supplies accounted for only 9% of total final heat consumption globally. Considering that the main markets experienced mild weather conditions during the 2022 heating seasons, this stability could in fact hide an increase in the number of district network connections.
In the NZE Scenario, district heating continues to supply a similar share of global final heat consumption, although energy efficiency improvements in district heating networks and in building envelopes allow for a decline in district heat supplies by 2030, down by more than 15% compared with 2022. In the same period, renewable energy used in district networks more than doubles from current levels, with renewable sources (including renewable electricity used by large-scale heat pumps) representing almost one-fifth of district heating supplies by 2030.